Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Turk J Biol ; 44(3): 157-167, 2020.
Article in English | MEDLINE | ID: covidwho-1389592

ABSTRACT

A novel pathogen, named SARS-CoV-2, has caused an unprecedented worldwide pandemic in the first half of 2020. As the SARS-CoV-2 genome sequences have become available, one of the important focus of scientists has become tracking variations in the viral genome. In this study, 30366 SARS-CoV-2 isolate genomes were aligned using the software developed by our group (ODOTool) and 11 variations in SARS-CoV-2 genome over 10% of whole isolates were discussed. Results indicated that, frequency rates of these 11 variations change between 3.56%-88.44 % and these rates differ greatly depending on the continents they have been reported. Despite some variations being in low frequency rate in some continents, C14408T and A23403G variations on Nsp12 and S protein, respectively, observed to be the most prominent variations all over the world, in general, and both cause missense mutations. It is also notable that most of isolates carry C14408T and A23403 variations simultaneously and also nearly all isolates carrying the G25563T variation on ORF3a, also carry C14408T and A23403 variations, although their location distributions are not similar. All these data should be considered towards development of vaccine and antiviral treatment strategies as well as tracing diversity of virus in all over the world.

2.
Virus Res ; 288: 198113, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-695588

ABSTRACT

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) is recognized as one of the life-threatening viruses causing the most destructive pandemic in this century. The genesis of this virus is still unknown. To elucidate its molecular evolution and regulation of gene expression, the knowledge of codon usage is a pre-requisite. In this study, an attempt was made to document the genome-wide codon usage profile and the various factors influencing the codon usage patterns of SARS-CoV-2 in human and dog. The SARS-CoV-2 genome showed relative abundance of A and U nucleotides and relative synonymous codon usage analysis revealed that the preferred synonymous codons mostly end with A/U. The analysis of ENc-GC3s, Neutrality and Parity rule 2 plots indicated that natural selection and other undefined factors dominate the overall codon usage bias in SARS-CoV-2 whereas the impact of mutation pressure is comparatively minor. The codon adaptation index and relative codon deoptimization index of SARS-CoV-2 deciphered that human is more favoured host for adaptation compared to dog. These results enhance our understanding of the factors involved in evolution of the novel human SARS-CoV-2 and its adaptability in dog.


Subject(s)
Adaptation, Biological/genetics , Betacoronavirus/genetics , Codon Usage , Coronavirus Infections/virology , Dog Diseases/virology , Genome, Viral , Pneumonia, Viral/virology , Animals , COVID-19 , Cats , Cattle , Chiroptera , Dogs , Evolution, Molecular , Horses , Host Specificity , Humans , Mutation , Pandemics , SARS-CoV-2 , Selection, Genetic , Swine
3.
Infect Genet Evol ; 85: 104432, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-614101

ABSTRACT

The genetic code contains information that impacts the efficiency and rate of translation. Translation elongation plays a crucial role in determining the composition of the proteome, errors within a protein contributes towards disease processes. It is important to analyze the novel coronavirus (2019-nCoV) at the codon level to find similarities and variations in hosts to compare with other human coronavirus (CoVs). This requires a comparative and comprehensive study of various human and zoonotic nature CoVs relating to codon usage bias, relative synonymous codon usage (RSCU), proportions of slow codons, and slow di-codons, the effective number of codons (ENC), mutation bias, codon adaptation index (CAI), and codon frequencies. In this work, seven different CoVs were analyzed to determine the protein synthesis rate and the adaptation of these viruses to the host cell. The result reveals that the proportions of slow codons and slow di-codons in human host of 2019-nCoV and SARS-CoV found to be similar and very less compared to the other five coronavirus types, which suggest that the 2019-nCoV and SARS-CoV have faster protein synthesis rate. Zoonotic CoVs have high RSCU and codon adaptation index than human CoVs which implies the high translation rate in zoonotic viruses. All CoVs have more AT% than GC% in genetic codon compositions. The average ENC values of seven CoVs ranged between 38.36 and 49.55, which implies the CoVs are highly conserved and are easily adapted to host cells. The mutation rate of 2019-nCoV is comparatively less than MERS-CoV and NL63 that shows an evidence for genetic diversity. Host-specific codon composition analysis portrays the relation between viral host sequences and the capability of novel virus replication in host cells. Moreover, the analysis provides useful measures for evaluating a virus-host adaptation, transmission potential of novel viruses, and thus contributes to the strategies of anti-viral drug design.


Subject(s)
Computational Biology/methods , Coronavirus/genetics , Mutation Rate , SARS-CoV-2/genetics , Base Composition , Coronavirus/classification , Coronavirus/metabolism , Evolution, Molecular , Genetic Code , Humans , Phylogeny , Protein Biosynthesis , SARS-CoV-2/classification , SARS-CoV-2/metabolism
4.
J Med Virol ; 92(6): 660-666, 2020 06.
Article in English | MEDLINE | ID: covidwho-7544

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging disease with fatal outcomes. In this study, a fundamental knowledge gap question is to be resolved by evaluating the differences in biological and pathogenic aspects of SARS-CoV-2 and the changes in SARS-CoV-2 in comparison with the two prior major COV epidemics, SARS and Middle East respiratory syndrome (MERS) coronaviruses. METHODS: The genome composition, nucleotide analysis, codon usage indices, relative synonymous codons usage, and effective number of codons (ENc) were analyzed in the four structural genes; Spike (S), Envelope (E), membrane (M), and Nucleocapsid (N) genes, and two of the most important nonstructural genes comprising RNA-dependent RNA polymerase and main protease (Mpro) of SARS-CoV-2, Beta-CoV from pangolins, bat SARS, MERS, and SARS CoVs. RESULTS: SARS-CoV-2 prefers pyrimidine rich codons to purines. Most high-frequency codons were ending with A or T, while the low frequency and rare codons were ending with G or C. SARS-CoV-2 structural proteins showed 5 to 20 lower ENc values, compared with SARS, bat SARS, and MERS CoVs. This implies higher codon bias and higher gene expression efficiency of SARS-CoV-2 structural proteins. SARS-CoV-2 encoded the highest number of over-biased and negatively biased codons. Pangolin Beta-CoV showed little differences with SARS-CoV-2 ENc values, compared with SARS, bat SARS, and MERS CoV. CONCLUSION: Extreme bias and lower ENc values of SARS-CoV-2, especially in Spike, Envelope, and Mpro genes, are suggestive for higher gene expression efficiency, compared with SARS, bat SARS, and MERS CoVs.


Subject(s)
Betacoronavirus/genetics , Cysteine Endopeptidases/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Nucleocapsid Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , Severe acute respiratory syndrome-related coronavirus/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Animals , Base Sequence , Betacoronavirus/classification , Betacoronavirus/pathogenicity , COVID-19 , Chiroptera/microbiology , Codon Usage , Computational Biology , Coronavirus 3C Proteases , Coronavirus Envelope Proteins , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cysteine Endopeptidases/metabolism , Eutheria/microbiology , Gene Expression , Humans , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nucleocapsid Proteins/metabolism , Pandemics , Phosphoproteins , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , RNA-Dependent RNA Polymerase/metabolism , Severe acute respiratory syndrome-related coronavirus/classification , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Sequence Homology, Nucleic Acid , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/transmission , Severe Acute Respiratory Syndrome/virology , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism , Viral Nonstructural Proteins/metabolism
5.
J Virol Methods ; 277: 113806, 2020 03.
Article in English | MEDLINE | ID: covidwho-7252

ABSTRACT

The nucleocapsid (N) protein of a coronavirus plays a crucial role in virus assembly and in its RNA transcription. It is important to characterize a virus at the nucleotide level to discover the virus's genomic sequence variations and similarities relative to other viruses that could have an impact on the functions of its genes and proteins. This entails a comprehensive and comparative analysis of the viral genomes of interest for preferred nucleotides, codon bias, nucleotide changes at the 3rd position (NT3s), synonymous codon usage and relative synonymous codon usage. In this study, the variations in the N proteins among 13 different coronaviruses (CoVs) were analysed at the nucleotide and amino acid levels in an attempt to reveal how these viruses adapt to their hosts relative to their preferred codon usage in the N genes. The results revealed that, overall, eighteen amino acids had different preferred codons and eight of these were over-biased. The N genes had a higher AT% over GC% and the values of their effective number of codons ranged from 40.43 to 53.85, indicating a slight codon bias. Neutrality plots and correlation analyses showed a very high level of GC3s/GC correlation in porcine epidemic diarrhea CoV (pedCoV), followed by Middle East respiratory syndrome-CoV (MERS CoV), porcine delta CoV (dCoV), bat CoV (bCoV) and feline CoV (fCoV) with r values 0.81, 0.68, -0.47, 0.98 and 0.58, respectively. These data implied a high rate of evolution of the CoV genomes and a strong influence of mutation on evolutionary selection in the CoV N genes. This type of genetic analysis would be useful for evaluating a virus's host adaptation, evolution and is thus of value to vaccine design strategies.


Subject(s)
Codon Usage , Coronavirus/genetics , Evolution, Molecular , Genome, Viral , Nucleocapsid Proteins/genetics , Viral Vaccines , Animals , Humans , Mutation , Nucleotides/analysis , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL